Keras

Keras tf.keras 是用于构建和训练深度学习模型的 TensorFlow 高阶 API。利用此 API,可实现快速原型设计、先进的研究和生产,它具有以下三大优势:

方便用户使用 Keras 具有针对常见用例做出优化的简单而一致的界面。它可针对用户错误提供切实可行的清晰反馈。 模块化和可组合 将可配置的构造块组合在一起就可以构建 Keras 模型,并且几乎不受限制。 易于扩展 可以编写自定义构造块,表达新的研究创意;并且可以创建新层、指标、损失函数并开发先进的模型。

聊天机器人

将数据传递到模型的内置训练循环时,应当使用 NumPy 数组(如果数据很小且适合装入内存)或 tf.data Dataset 对象。在接下来的段落中,我们将 MNIST 数据集用作 NumPy 数组,以演示如何使用优化器、损失和指标。

我们考虑以下模型(在这里,我们使用函数式 API 构建了此模型,但它也可以是序贯模型或子类化模型):

1
2
3
4
5
6
inputs = keras.Input(shape=(784,), name="digits")
x = layers.Dense(64, activation="relu", name="dense_1")(inputs)
x = layers.Dense(64, activation="relu", name="dense_2")(x)
outputs = layers.Dense(10, activation="softmax", name="predictions")(x)

model = keras.Model(inputs=inputs, outputs=outputs)

所需依赖

1
2
3
4
5
6
7
8
9
10
11
12
import nltk
import ssl
from nltk.stem.lancaster import LancasterStemmer
stemmer = LancasterStemmer()

import numpy as np
from keras.models import Sequential
from keras.layers import Dense, Activation, Dropout
from keras.optimizers import SGD
import pandas as pd
import pickle
import random